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9 Abstract  

 

Applications of  Fourier transform near infrared  (FT-NIR)  spectroscopy  in fisheries science are 

currently limited. Our analyses of otolith spectral data demonstrate the potential applicability of  

FT-NIR spectroscopy  to  otolith chemistry and spatial variability  in fisheries science.  The 

objective of this study was  to examine the use of FT-NIR spectroscopy  as  a tool to differentiate  

among  marine fishes in four large marine ecosystems. We examined otoliths from 13 different  

species,  with  3 of these species  coming from different regions. Principal component analysis  

(PCA)  described the main directions along which  the specimens were separated. The separation  

of species  and  their  ecosystems may suggest  interactions between fish phylogeny, ontogeny, and 

environmental conditions that can be  evaluated using  FT-NIR  spectroscopy. In order to 

discriminate  spectra across ecosystems and species, four  supervised classification model 

techniques  were utilized: soft independent modelling of  class analogies  (SIMCA), support vector  

machine discriminant analysis (SVMDA), partial least squares discriminant analysis (PLSDA),  

and k-nearest neighbor  analysis  (KNN). This study  showed that  the best performing model to 

classify  combined ecosystems, all four ecosystems, and  species was  the KNN model, which had  
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25 an overall accuracy  rate of 99.9%,  97.6%, a nd 91.5%, respectively. Results from this study  

suggest that further investigations are needed to determine applications of  FT-NIR spectroscopy  

to otolith chemistry  and spatial variability.  
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Introduction  

 

Fishery resources in many  parts of the world are  managed based on population models  for  which 

fish age data are an essential source of information. In particular, age  data provide information 

on recruitment,  growth, maturity, and resource  productivity1,2  and form the basis upon which the  

overfished status of  a stock is assessed.1,2  Fish age has historically been determined by  

microscopically counting pairs of annual  opaque and translucent  growth zones in a number of  

different hard structures,  including scales, vertebrae, opercula, spines, and,  most commonly,  

otoliths.3,4   

As part of the inner ear of teleost fishes,5  otoliths  are involved in such functions as  

balance and hearing.6  Some studies link otolith morphology to swimming,  feeding, spatial 

distribution, and acoustic communication.7  Although fish have three pairs of otoliths, the largest  

otoliths, the sagittae,  are  usually used for age determination and research. Fish otoliths have  

stimulated scientific interest because these biological structures  can be utilized as  

biochronometers.8  Otoliths, which are acellular and metabolically inert,  begin forming prior to 

hatching a nd continue to grow in three dimensions throughout the life of the fish, even when 

somatic growth is non-existent.9,10  Therefore, these biological structures  contain a micro-

chemical record of temporally  resolved environmental histories of the water properties within 

which the animal lived throughout its life.10   They  reveal information on stock structure,11,12  

ontogenetic movement and migration patterns,13-15  thermal histories,16,17  metabolic activity,18  and 

paleoclimate.19,20   
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Otoliths are composed of  alternating  mineral-rich and protein-rich bands, which  are 

deposited daily.21,22  A mineral fraction consists  mainly of  calcium carbonate and  a variety of  

minor and trace elements.13,23  The organic fraction, which ranges  from 0.2 to 10%   by otolith  

weight,  includes over 380 pr oteins, glycoproteins, lipoproteins, glycosaminoglycans, and 

polysaccharides.  8, 23-26  In otoliths an organic  fraction produces absorption bands in the near  

infrared region. Organic  compounds in this  region are represented by  overlapping  overtone and 

combination ba nds  of a few functional  groups, such as C-H (aliphatic), C-H (aromatic), C-O 

(carboxyl), O-H (hydroxyl), and N-H (amine and amide).27  Although the molecular overtone and 

combination bands seen in the  near infrared region  are broad, multivariate calibration and 

classification techniques  are employed to  extract the desired  chemical information.28  The 

combination of second derivative followed by  standard normal variate (SNV) was  shown t o be  

successful  in resolving overlapping bands  in  addition to scattering c orrection.29,30   

Fourier transform near infrared  (FT-NIR)  spectroscopy  is widely utilized by  agricultural,  

pharmaceutical, chemical, and other industries  due to its rapid and non-destructive testing  

capabilities.  Recently,  FT-NIR  spectroscopy  has  been applied in a  few studies of biodiversity  

and ecological physiology  studies.31,32  Applications of  FT-NIR  spectroscopy  in fisheries science 

are currently limited,  with five  published studies having focused on biological structures  such  as  

otoliths  of marine fishes33-35  or shark vertebrae.36,37  Traditional approaches to determine fish age  

from otoliths are often time-consuming a nd expensive, and can include observational  

subjectivity. In contrast, FT-NIR  spectroscopy  methods have shown the potential to increase the  

efficiency and improve the repeatability of ageing studies.35   
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76 FT-NIR  spectroscopy  has offered new possibility  for classification of fish otoliths based on 

spectral properties.  The  ability of near infrared radiation to penetrate samples to a great depth38  

provides unique opportunity for  capturing otoliths’ capacity  as biochronometers.  We 

hypothesized that  this technology could provide  essential information for ecological studies and 

may be useful in determining diet composition based on spectral data from otoliths found in 

stomachs of marine predators.  The objective of this study  was to examine the use of  FT-NIR  

spectroscopy  as a tool to differentiate between 16  marine fishes  representing 13 different species  

from four  large marine ecosystems (Table 1, Figure  1).  The specific aims were to (1) acquire 

spectral scans of otoliths, (2) select  effective spectral  regions, (3) calibrate and validate 

classification models  that discriminate between ecosystems and fish species,  and (4) compare the 

models  to  select the optimal one  by  comparing the overall accuracy  estimates.   

 

Materials  and methods  

 

Spectral data  acquisition  and preprocessing  

FT-NIR spectra were acquired from  the sagittal otoliths (n = 3,703)  of 16 marine fishes  

representing 13 different  species  sampled  from four large U.S. marine ecosystems (Table 1, 

Figure  1). Otoliths were  blotted and air  dried prior to scanning. Diffuse reflectance 

measurements from all otoliths were collected on  either  Bruker TANGO R  or MPA  II FTNIR  

spectrometers  with  integrating  spheres. Each  otolith was covered with a gold-coated reflector  
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96 stamp and scanned  at  a  90° compass  orientation with a concave-up position  (Figure  2). Spectra 

were  collected between 11,500 and 4,000 cm-1  at a resolution of 16 cm-1 . For each sample, 64  

scans were co-added and converted to a  final absorbance spectrum  (Figure  3A). OPUS software  

v. 7.5 (Bruker Optics, Ettlingen, Germany) was used for spectral  acquisition.  

Multivariate Data Analysis  

Spectral data were preprocessed with second derivative (Savitzky-Golay  method, 2nd order  

polynomial, 21 points), SNV, and mean centering  (Figure 3B-C). Chemometric software Solo 

v8.7 (Eigenvector Research, Inc., Manson, WA, USA) was used for data preprocessing,  

exploratory analysis  using  principal component analysis (PCA), data split, and multivariate  

classification  including soft independent modelling of  class analogies  (SIMCA), support vector  

machine discriminant analysis (SVMDA), partial least squares discriminant analysis (PLSDA),  

and k-nearest neighbor  analysis  (KNN).   

Exploratory  Data Analysis   

In order to learn  about the data distribution  and grouping, PCA  was used to evaluate the extent of  

spectral variability across species and  ecosystems.  PCA considers all variables and  linearly  

transforms the original data into new orthogonal  latent  variables  (principal  components, PC). 

Each  PC  is  defined by  a  loading vector  and  has  maximum variance  of the scores.39  For  this  

study,  PCA score plots were  used to explore the sample distribution and analyze grouping  

patterns  in the data by plotting the first two or three PCs, which often represent most of  the 

variability in the data. PC loadings were used to  select  optimal wavenumbers  for discriminating  

species and  ecosystems.  
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117 Data Split  

In order to validate classification  models, each species data set was split into a calibration and  a 

prediction set using the  Kennard-Stone method, which  selects a subset of  samples that provide 

uniform coverage over the predictor space  and includes exterior samples in the calibration set  

(Table 1).40  The calibration  set was used to  generate classification  models and the  prediction set  

was  used to assess the predictive performance of  models.  

Multivariate Classification  

Four  supervised classification model techniques, SIMCA, SVMDA, PLSDA, and KNN,  were 

used for evaluating  spectral variability  across the data from different species and ecosystems.  

The main task of the spectra classification analysis is to summarize the multivariate data  

structure of the  groups in order to establish rules for correctly assigning samples with unknown 

group membership.39  The correct classification rate for each  group  was reported as the ratio of  

correctly  classified samples with the total number  of samples in the prediction set (Ratio) and  

rate (%) of correctly  classified samples (Tables 2  - 4). The overall accuracy  estimate was  also  

reported for each model.      

SIMCA  is a classification technique that  applies  PCA decomposition to each group 

separately  and identifies  variables that are important for group assignment.39,41  PLSDA is  a linear  

classification method that calculates separate PLS regression  vectors and corresponding  

predicted values  to determine group membership.28, 42  SVMDA is a  non-linear method that 

computes an optimal direction to discriminate between groups. It  maps the original data into a  

transformed space where  linear boundaries  can be constructed in order to maximize the margin  
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138 between  classes, which is the distance between boundary and the nearest data point of each  

class.39,43  KNN is a nonparametric method based on calculating  the  distance between each  

sample and  its  k-nearest  neighbors  and uses  these  closest  k  objects  to  estimate  group membership 

of a new object.28,39,44  For our study  k = 3 was selected.  

 

Results  and discussion  

 

Exploratory Data Analysis  

All combinations  of species were analyzed with four PCs  from the PCA.  PC loading indicated 

that the wavenumbers from 7,486.34 cm-1  to 6,645.36 cm-1  and from 6,035.24 to 4,015.25 cm-1  

had the largest  contributions to PCs. Therefore, these wavenumbers  were selected for final data 

analysis (Figure 4).  The selected  wavenumbers  cover first overtones of N-H, O-H, and C-H 

bonds, stretching vibrations, and c ombinations.37  

 Most variation in the spectral data was described  by PC1,  PC2, and PC3. PC1  (81.48%  

of captured variance) is the main direction along  which the specimens  separated  (Figure 5A).  

Two data clusters  were clearly separated  along the PC1 axis.  Eastern Bering Sea and  North 

Pacific Ocean  specimens represented  most of the  samples in two elongated clusters,  with similar  

within-class variance, on  the positive side of the  PC1 axis (Figure 5A).  Gulf  of Mexico and 

North Atlantic Ocean  specimens were represented  in both an elongated cluster,  with similar  

within-class variance,  in  the middle of the plot and a small tight cluster  on the negative side  of 
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158 the PC1 axis  (Figure  5A).  The zoomed-in  view of  the  negative-side cluster showed Gulf of 

Mexico and North Atlantic Ocean clusters overlapping, w ith Gulf of  Mexico species located to  

the  left  of North Atlantic Ocean  species (Figure 5A-B).   

PC2 (7.85%  of captured variance) and PC3 (5.17% of captured variance)  are  the main  

directions  along which the specimens separated according to the latitudinal variation of the  

ecosystems  from which species  were collected  (Figure 5A).  All  data clusters overlapped along  

the PC2 and PC3 axes (Figure 5A-B).  Eastern  Bering Sea and  North Pacific Ocean  specimens  

were displaced from  each other with the  higher  scores along  the PC2 axis  corresponding to the  

North Pacific Ocean  species  and the  higher  scores  along  the  PC3 a xis corresponding to the  

eastern  Bering Sea (Figure 5A). Gulf of Mexico and North Atlantic Ocean  specimens were also  

displaced vertically  from each other with the  lower scores  along the PC3 axis  corresponding to 

the Gulf of  Mexico  (Figure  5B).   

Clustering of species was observed for all ecosystems. The difference between  eastern  

Bering Sea and  North Pacific Ocean  species was  visible when PCA scores were plotted against  

the  first three PCs (Figure  6A-B).  Red  snapper from all regions  grouped with the  eastern Bering  

Sea and  North Pacific Ocean  species, w hile  gag from all regions  grouped with vermilion snapper  

and the other North Atlantic Ocean species (Figure 6A-B).  Acadian redfish and haddock from  

the northern part of  the North Atlantic Ocean were represented by separate clusters (Figure 6B).  

The difference between the eastern and western  Gulf of Mexico species  and  North Atlantic  

Ocean  species  from the  southern U.S. waters  of the  Atlantic Ocean was small  with faint 

clustering  along the PC3 axis  (Figure  6B).   
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Multivariate Classification  

Classification models were applied to discriminate between  species  grouped by  the ecosystems.  

Classification by combined  ecosystems was the most successful.  Discrimination between the  

group  that included  eastern Bering Sea and North  Pacific Ocean  specimens  and the  group that 

included  Gulf of Mexico and North Atlantic Ocean  specimens showed high overall accuracy for  

all models (Table 2). After examining the four classification models, KNN  and SVMDA were  

the best performing models with the KNN model  (99.9% accuracy) slightly  outperforming the  

SVMDA model (99.8% accuracy). Classification success by combined  ecosystems can be 

explained by species  genetic divergence. The transarctic interchange of marine organisms  

between the northern Pacific and Atlantic oceans happened about 3.5 million years ago during  

the middle and late Pliocene.45  Significant genetic distances between modern  populations of  

marine fish in the two oceans are thought to take  millions of  years to develop.45   

Classification by four ecosystems  had various  degrees  of success  for different models and 

predicted group membership  (Table 3). The accuracy of predictions for  eastern Bering Sea and  

North Pacific Ocean  specimens for all four models ranged from 98.6% to 100%. The accuracy of  

predictions  for Gulf of Mexico specimens  for all four models  ranged from  64.7% to 98.2%.  

North Atlantic Ocean  specimens were the hardest to predict, w ith accuracy  of prediction being 

26.1%  for SIMCA, 60.5% for PLSDA and SVMDA, and 96.6% for KNN. After examining the  

four classification models, KNN was the best performing model with the overall accuracy of  

97.6%.  

These classification results are consistent with environmental variations in all four  

ecosystems that may be due to the general direction of ocean  currents.  The southward-flowing  
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202 California Current and the northward-flowing Alaska Current  receive different  volumes and 

flows of warm water  from the same source,  eastward-flowing North Pacific Current  (Figure  

1).46,47  The Alaska Current continues into the Alaskan Stream, which transports water into the  

Bering Sea.46,47  Difference of the eastern  Bering  Sea group  from North Pacific Ocean specimens  

can be  explained by annual sea ice  formation and melt events, which have  strong impacts on 

marine biogeochemical cycles in the Bering Sea.46,48  In the Gulf of Mexico, the  Loop Current, 

which brings warm water from the Caribbean, dominates oceanographic features (Figure  1).49  

The  Loop Current leaves  the Gulf and continues  as the Gulf Stream parallel  to the Atlantic coast  

(Figure  1).49,50  The Gulf Stream separates from the shelf edge near Cape Hatteras and  creates a 

boundary between two oceanographic regimes  where s ome members of a southern warm-

temperate fauna and a northern cold-temperate  fauna are known to move  between two regimes.50   

Classification models were also applied to discriminate between the species.  

Classification by species  had  various  degrees  of success for different models and predicted group 

membership (Table 4). Three models  (SIMCA, KNN, and SVMDA)  obtained good 

discrimination rates for species from the eastern Bering Sea, North Pacific  Ocean,  and the  

northern part of  the  North Atlantic Ocean. PLSDA  was the worst performing model  for these 

species  with  an  accuracy  of prediction of 82%  for  walleye pollock from  the  eastern  Bering Sea 

and 55.6% for haddock from the northern part of  the North Atlantic Ocean.  All four models  

could not  correctly classify  all  species from  the Gulf of Mexico and the  southern pa rt of  the  

North Atlantic Ocean. Vermilion snapper was  correctly classified by both KNN and SVMDA  but  

not by  PLSDA  (50% accuracy)  and SIMCA  (75% accuracy). The accuracy of predictions for  gag  

grouper from  the Gulf of Mexico for  all four models ranged from 48% by PLSDA to 99.3% by  

SIMCA.  The  accuracy of predictions for  gag gr ouper from the southern part of  the North 
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Atlantic Ocean ranged from 6.3% by PLSDA to 100% by SVMDA. While red snapper from the  

eastern part of Gulf of Mexico was predicted with  a  higher degree of accuracy  (74.7% to 97.3%), 

the prediction of  red snapper from the western part of  the  Gulf of Mexico had worse accuracy  

rates for  all models (3.3% to 56.7%). The  accuracy of predictions for North Atlantic red snapper  

ranged from 12.8% by SIMCA to 95.7% by KNN.  After examining the  four classification  

models, KNN was  determined to be  the best performing model to discriminate  between species,  

with  an  overall accuracy  estimate of 91.5%. Most of the misclassifications  for KNN happened 

between the same species from different  geographic areas (e.g.  red snapper and  gag  grouper) or  

different species from the same geographic area (e.g. walleye pollock, Pacific cod, and yellowfin 

sole) (Figure  7).   

Although precise environmental and biological factors contributing to spectral variability  

of otoliths are unknown at this time, our study suggests that for the most part  species that are  

taxonomically  and regionally closer share similar  molecular constituents activated by near  

infrared light. Taxonomic differences  may reflect  phylogenetic relationship, functional role, and 

structure of otoliths.51  Thomas et al.8  revealed  that  most otolith proteins  are highly conserved  

across taxa.  The authors  also  suggested that  the diversity of otolith proteins reflect development  

and physiological  change over  an  individual’s lifetime.8  Regional differences are related to  

environmental differences between different geographic locations.51  The structure of some otolith 

proteins is influenced by  such external physical factors as temperature,22,52  which  affects  protein 

synthesis.53  Essential amino acids in otoliths  are  related to fish diet and trophic food web 

structure.54  Therefore, it is possible that habitat, e nvironment, a nd diet  composition in different  

ecosystems  may interact with fish phylogenetic  and ontogenetic development to  influence 

spectral differences in otoliths.  FT-NIR  spectroscopy  of otoliths may prove to be a useful tool  
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248 not only for distinguishing  the  residence  of fishes  among habitats but  also  for investigating  the 

effects of warming ocean water on  the food  web.  

The results of this study  show potential for providing a fast  and reliable method of  

identifying fish species and populations.  It is less time-consuming than otolith shape analysis, 

otolith microstructure analysis,  or  genetic research.  In addition to saving time,  FT-NIR  

spectroscopy  does not require  otolith  destruction. It  leaves  otoliths  intact and usable for other  

analyses.  To strengthen the  case for using  FT-NIR  spectroscopy  for taxonomic classification of  

otoliths, further research  is needed to determine an optimal otolith set with  all possible spectral 

variability among specimens and within each  age  class. Future research may  determine if  

scanning ot oliths with FT-NIR  spectroscopy  can  assist with differentiating fish species  that are 

of similar appearance  and difficult to taxonomically identify. P erhaps additional studies can also 

make inquiries into other fish structures like skin or muscle55  to validate our findings of  

differentiation between fish species and populations.  

  

Conclusion  

 

Our analyses of otolith spectral data collected from 13 different marine fish species from  four  

marine ecosystems demonstrate the potential applicability of  FT-NIR  spectroscopy  to  fisheries  

science. The separation of  ecosystems and  species by  longitude and latitude  may suggest 

interactions between  phylogenetics, ontogeny, and  environmental conditions that can be  

evaluated using  FT-NIR  spectroscopy. This study  showed that the best performing model to 
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269 classify  combined ecosystems, all four ecosystems, and species was  a KNN model.  Results from 

this study  clearly suggest that further investigations are needed to determine applications of  FT-

NIR  spectroscopy  to otolith chemistry and spatial variability.  FT-NIR  spectroscopy  of otoliths  

may prove to be  a useful  tool not only for distinguishing residence among  ecosystems  but for 

investigating  the effects of warming ocean waters  and on t he  food web.  
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Ecosystems       Map 
 Key  Species  Cal. 

 SN 
Pred. 

 SN 

 Eastern Bering Sea  

(EBS)  

EBS.1  walleye pollock (Gadus chalcogrammus)   150  150 

EBS.2  Pacific cod (Gadus macrocephalus)   150  150 

EBS.3   yellowfin sole (Limanda aspera)   150  150 

North Pacific Ocean  

(NPO)  

 NPO.1 Chinook salmon (Oncorhynchus tshawytscha)   150  150 

 NPO.2 North Pacific hake (Merluccius productus)   150  150 

 NPO.3  gopher rockfish (Sebastes carnatus)  100  13 

 NPO.4 Pacific sardine (Sardinops sagax)   100  12 

 NPO.5 Pacific mackerel (Scomber japonicus)   150  109 

 U.S. Gulf of Mexico 

(GOM)  

 GOM.1  red snapper (Lutjanus campechanus) – W GOM   150  150 

 GOM.2 gag grouper (Mycteroperca microlepis)   150  150 

 GOM.3  red snapper (Lutjanus campechanus) – E GOM   150  150 

NAO.1   vermilion snapper (Rhomboplites aurorubens)  150  4 

NAO.2  red snapper (Lutjanus campechanus)   150  47 
North Atlantic Ocean  

(NAO)  
NAO.3  gag grouper (Mycteroperca microlepis)   100  16 

NAO.4   haddock (Melanogrammus aeglefinus)  150  9 

NAO.5    Acadian redfish (Sebastes fasciatus)  150  43 

       Cal. SN  –  calibration set sample number, Pred. SN  – pr ediction  set  sample number.  
     E GOM  –  Eastern  U.S. Gulf of Mexico, W GOM  –  Western  U.S. Gulf of Mexico.    

 

     

Table 1. Ecosystems, fish species, and sample size.  



 Classification 
by combined 
ecosystems  

 Model 
SIMCA  PLSDA   SVMDA KNN  

 Ratio  % 
Overall  

 accuracy 
 estimate 

 Ratio  % 
Overall  

 accuracy 
 estimate 

 Ratio  % 
Overall  

 accuracy 
 estimate 

 Ratio  % 
Overall  

 accuracy 
 estimate 

EBS and 
 NPO  884/884  100 

 94.6% 
 871/884  99.7 

 98.5% 

 884/884  100 

 99.8% 

 884/884  100 

 99.9% GOM and 
NAO   490/569  86.1  560/569  98.4  566/569  99.5  568/569  99.8 

 
 

 

  

Table 2. Classification by  combined ecosystems  comparing  performance of  four models: soft independent modelling of class  analogies  
(SIMCA),  partial least squares discriminant analysis (PLSDA),  support vector machine discriminant  analysis  (SVMDA), and k-nearest  
neighbor  analysis (KNN).   

EBS  –  Eastern  Bering Sea, NPO –  North Pacific Ocean,  GOM  – U .S. Gulf of Mexico, NAO –  North Atlantic Ocean. 



 Classification 
by  

ecosystems  

 Model 
 SVMDA PLSDA  SIMCA  KNN  

 Ratio  % 
Overall  

 accuracy 
 estimate 

 Ratio  % 
Overall  

 accuracy 
 estimate 

 Ratio  % 
Overall  

 accuracy 
 estimate 

 Ratio  % 
Overall  

 accuracy 
 estimate 

EBS   450/450  100  450/450  100  448/450  99.6  450/450  100 
 NPO  433/434  99.8  85.8%  428/434  98.6  85.9%  430/434  99.1  93%  434/434  100  97.6%NAO   72/119  60.5  72/119  60.5  31/119  26.1  115/119  96.6 
 GOM  291/450  64.7  298/450  66.2  442/450  98.2  419/450  93.1 

            EBS – Eastern Bering Sea, NPO – North Pacific Ocean, NAO – North Atlantic Ocean, GOM – U.S. Gulf of Mexico. 
 

 

  

Table 3. Classification by  ecosystems  comparing  performance of  four models: support vector machine discriminant analysis (SVMDA),  
partial least squares discriminant analysis (PLSDA), soft independent modelling of class analogies (SIMCA), and k-nearest neighbor  
analysis (KNN).    



    
   

   

 
 

 
 

 
    

  
 
 
 

  
 
 
 

  
 
 
 

  
 
 
 

     

 

  

 

  

 

  

 

           

           
 

           

  
           

          
          

 
           

  
          

             
  

          

 
           

            
           

           
  

          

    

Table 4. Classification by fish species results comparing performance of four models: partial least squares discriminant analysis 
(PLSDA), soft independent modelling of class analogies (SIMCA), support vector machine discriminant analysis (SVMDA), and k-
nearest neighbor analysis (KNN). 

Classification 
by species 

Map 
Key 

Model 
PLSDA SIMCA SVMDA KNN 

Ratio % 
Overall 

accuracy 
estimate 

Ratio % 
Overall 

accuracy 
estimate 

Ratio % 
Overall 

accuracy 
estimate 

Ratio % 
Overall 

accuracy 
estimate 

walleye pollock EBS.1 123/150 82 

66.6% 

143/150 95.3 

84.9% 

145/150 96.7 

88.2% 

142/150 94.7 

91.5% 

Pacific cod EBS.2 145/150 96.7 146/150 97.3 145/150 96.7 148/150 98.7 

yellowfin sole EBS.3 135/150 90 146/150 97.3 148/150 98.7 148/150 98.7 
Chinook 
salmon NPO.1 150/150 100 150/150 100 150/150 100 150/150 100 

North Pacific 
hake NPO.2 150/150 100 148/150 98.7 150/150 100 150/150 100 

gopher rockfish NPO.3 13/13 100 13/13 100 13/13 100 13/13 100 
Pacific sardine NPO.4 12/12 100 12/12 100 12/12 100 12/12 100 
Pacific 
mackerel NPO.5 109/109 100 107/109 98.2 109/109 100 109/109 100 

red snapper -
W GOM GOM.1 13/150 8.7 5/150 3.3 22/150 14.7 85/150 56.7 

gag grouper GOM.2 72/150 48 144/145 99.3 136/150 90.7 147/150 98 
red snapper -
E GOM GOM.3 143/150 95.3 146/150 97.3 139/150 92.7 112/150 74.7 

vermilion  
snapper NAO.1 2/4 50 3/4 75 4/4 100 4/4 100 

red snapper NAO.2 11/47 23.4 6/47 12.8 40/47 85.1 45/47 95.7 
gag grouper NAO.3 1/16 6.3 12/16 75 16/16 100 12/16 75 
haddock NAO.4 5/9 55.6 9/9 100 9/9 100 9/9 100 
Acadian 
redfish NAO.5 39/43 90.7 43/43 100 43/43 100 43/43 100 

E GOM – East U.S. Gulf of Mexico, W GOM – West U.S. Gulf of Mexico. 



 
 

 
 

 

 

 

 

 

 

 

 

 

  

Figure 1. Location of fish collection sites. Complete list of species is shown in Table 1. 
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Figure 2. (A) Top and (B) side view of an otolith placed on the integrating sphere at a 90° 
compass orientation with a concave-up position. The gold-coated reflector stamp covers the 
sample during scanning to reduce stray light infiltration. 



C 

-1 

-1-1 

BA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    
  

    
        

       
   

  

 

 

  

 

Figure 3. (A) Raw otolith FT-NIR spectra colored by regions. Whited-out areas indicate spectral 
regions that were excluded from consideration in final data analysis. (B) Second derivative and 
SNV-transformed mean spectra colored by regions. (C) Second derivative and SNV-transformed 
mean spectra colored by species. GOM – U.S. Gulf of Mexico, NPO – North Pacific Ocean, 
NAO – North Atlantic Ocean, EBS – Eastern Bering Sea, E GOM – East U.S. Gulf of Mexico, 
W GOM – West U.S. Gulf of Mexico. 
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Figure 4. Principal component (PC) loadings. 
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Figure  5. (A) 3D view of the PCA scores of otolith FT-NIR spectra  colored by regions  and (B)  
zoomed-in view  of the black rectangular area of the plot.  EBS  –  Eastern Bering  Sea, GOM  –  
U.S. Gulf of Mexico, NAO  –  North Atlantic Ocean, NPO –  North Pacific Ocean.  
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Figure 6. (A) 3D view of the PCA scores of otolith FT-NIR spectra colored by species and (B) 
zoomed-in view of the black rectangular area of the plot. GOM – U.S. Gulf of Mexico, NAO – 
North Atlantic Ocean, E GOM – East U.S. Gulf of Mexico, W GOM – West U.S. Gulf of 
Mexico. 
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Figure 7. Species classification by k-nearest neighbor (KNN) modeling results. 
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